Equazioni differenziali del primo ordine

Un'equazione differenziale ordinaria del primo ordine é un'equazione che stabilisce un legame tra una funzione incognita y = y(x), la sua derivata prima y' = y'(x) ed eventualmente la variabile indipendente x.

Per esempio sono equazioni differenziali ordinarie del primo ordine: $y'=\sin x$, y'=5y, $y'+3y=\ln x$, $y'+\frac{y^2}{x}=1$.

Una soluzione o integrale di tale equazione é una funzione (derivabile) y(x) tale che, sostituendo nell'equazione, al posto di y, y(x) e al posto di y', y'(x), si ottenga un'identitá.

Per esempio $y(x) = -\cos x$ é una soluzione di $y' = \sin x$ e $y(x) = e^{5x}$ é una soluzione di y' = 5y.

Risolvere o integrare un'equazione differenziale, significa determinare l'insieme di tutte le sue soluzioni. Tale insieme si chiama integrale generale.

L'integrale generale di un'equazione differenziale del primo ordine é costituito da infinite funzioni che dipendono da una costante arbitraria c.

Per esempio l'integrale generale di $y' = \sin x$ é $y(x) = \int \sin x dx = -\cos x + c$, mentre l'integrale generale di y' = 5y é $y(x) = c e^{5x}$, infatti, come si puó verificare facilmente, la derivata prima di tali funzioni é sempre uguale rispettivamente a $\sin x$ e 5y(x), indipendentemente dal valore di c.

Si chiama problema di Cauchy per un'equazione differenziale del primo ordine, il problema di determinare quali soluzioni di tale equazione verificano una **condizione iniziale** del tipo $y(x_0) = a$, con $a \in \mathbb{R}$.

Per esempio il problema di Cauchy $\begin{cases} y' = \sin x \\ y(\pi) = 1 \end{cases}$ ammette come unica soluzione $y(x) = -\cos x$, infatti, utilizzando

l'integrale generale $y(x) = -\cos x + c$ è imponendo la condizione iniziale, si ottiene il valore della costante c: $1 = y(\pi) =$ $-\cos \pi + c = 1 + c \Rightarrow c = 0$, da cui $y(x) = -\cos x$.

Il problema di Cauchy $\begin{cases} y'=5y\\ y(0)=3 \end{cases}$ ammette come unica soluzione $y(x)=3e^{5x}$, infatti, utilizzando l'integrale generale $y(x)=c\ e^{5x}$ e imponendo la condizione iniziale, si ottiene il valore della costante c: $3=y(0)=c\ e^0=c\Rightarrow c=3$, da cui

Si puó dimostrare che, sotto condizioni molto generali, che riterremo soddisfatte per ció di cui abbiamo bisogno, il problema di Cauchy ammette una ed una sola soluzione.

Equazioni differenziali del secondo ordine

Un'equazione differenziale ordinaria del secondo ordine é un'equazione che stabilisce un legame tra una funzione incognita y = y(x), le sue derivate prima e seconda y' = y'(x), y''(x) ed eventualmente la variabile indipendente x. Per esempio sono equazioni differenziali ordinarie del secondo ordine: $y'' = \sin x$, y'' + 4y = 0, $y'' + 2y' + 3y = e^x$, $y'' + \frac{y'}{x} = 1.$

Una soluzione o integrale di tale equazione é una funzione (derivabile due volte) y(x) tale che, sostituendo nell'equazione, al posto di y, y(x), al posto di y', y'(x) e al posto di y'', y''(x), si ottenga un'identitá. Per esempio $y(x) = -\sin x$ é una soluzione di $y'' = \sin x$ e $y(x) = \sin(2x)$ é una soluzione di y'' + 4y = 0.

L'integrale generale di un'equazione differenziale del secondo ordine é costituito da infinite funzioni che dipendono da due costanti arbitrarie c_1, c_2 .

Per esempio l'integrale generale di $y'' = \sin x$ si ottiene integrando una prima volta $y' = -\cos x + c_1$ e poi una seconda volta $y(x) = -\sin x + c_1 x + c_2$, mentre l'integrale generale di y'' + 4y = 0 é $y(x) = c_1 \cos(2x) + c_2 \sin(2x)$, infatti se

nell'equazione y'' + 4y = 0 si sostituisce y(x) e la sua derivata seconda y''(x) si ottiene un'identità, indipendentemente dal valore delle costanti c_1 e c_2 .

Si chiama problema di Cauchy per un'equazione differenziale del secondo ordine, il problema di determinare quali soluzioni di tale equazione verificano delle **condizione iniziale** del tipo $y(x_0) = a, y'(x_0) = b$ con $a, b \in \mathbb{R}$.

Per esempio il problema di Cauchy $\begin{cases} y'' = \sin x \\ y(0) = 0 \end{cases}$ ammette come unica soluzione $y(x) = -\sin x + 2x$, infatti, utilizzando y'(0) = 1

l'integrale generale $y(x) = -\sin x + c_1x + c_2$ e la sua derivata prima $y' = -\cos x + c_1$ e imponendo le condizione iniziale, si ottengono i valori delle costanti c_1 e c_2 : $0 = y(0) = -\sin 0 + c_1 + c_2 = c_2 \Rightarrow c_2 = 0$, $1 = y'(0) = -\cos 0 + c_1 = -\cos 0 + c_2 = 0$ $-1 + c_1 \Rightarrow c_1 = 2$, da cui $y(x) = -\sin x + 2x$.

Il problema di Cauchy $\begin{cases} y''+4y=0\\ y(0)=1\\ y'(0)=-2 \end{cases}$ ammette come unica soluzione $y(x)=\cos(2x)-\sin(2x),$ infatti, utilizzando

l'integrale generale $y(x) = c_1 \cos(2x) + c_2 \sin(2x)$ e la sua derivata prima $y'(x) = -2c_1 \sin(2x) + 2c_2 \cos(2x)$ e imponendo le condizioni iniziali, si ottiene il valore delle costanti c_1 e c_2 : $1 = y(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ e $-2 = y'(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 \Rightarrow c_1 = 1$ $-2c_1 \sin 0 + 2c_2 \cos 0 = 2c_2 \Rightarrow c_2 = -1$, da cui $y(x) = \cos(2x) - \sin(2x)$.

Si puó dimostrare che, sotto condizioni molto generali, che riterremo soddisfatte per ció di cui abbiamo bisogno, il problema di Cauchy ammette una ed una sola soluzione.

Equazioni differenziali di ordine $h \in \mathbb{N}$

Definizioni e proprietá delle equazioni differenziali di ordine h > 2 si ottengono con un processo di generalizzazione simile a quello con cui si passa dalle equazioni del primo ordine a quelle del secondo ordine. In particolare l'integrale generale di un'equazione di ordine h é caratterizzato da h costanti arbitrarie e il problema di Cauchy da h condizioni iniziali, quelle su y e le sue derivate fino all'ordine h-1.

Per esempio $y^{IV} = y$ é un'equazione di quarto grado, le funzioni e^x , e^{-x} , $\cos x$ e $\sin x$ sono tutte soluzioni di tale equazione, come si verifica facilmente calcolando le derivate quarte di tali funzioni.

L'integrale generale é $y(x) = c_1 e^x + c_2 e^{-x} + c_3 \cos x + c_4 \sin x$, infatti $y^{IV}(x) = c_1 e^x + c_2 e^{-x} + c_3 \cos x + c_4 \sin x$. Il problema

di Cauchy
$$\begin{cases} y(0) = 0 \\ y'(0) = 0 \\ y''(0) = 0 \\ y'''(0) = 4 \end{cases}$$

di Cauchy $\begin{cases} y^{IV} = y \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$ ammette come unica soluzione $y(x) = e^x - e^{-x} - 2\sin x$. Infatti tenendo conto dell'integrale $\begin{cases} y''(0) = 0 \\ y''(0) = 0 \end{cases}$

generale e delle sue derivate fino al terzo ordine:

 $y'(x) = c_1 e^x - c_2 e^{-x} - c_3 \sin x + c_4 \cos x, \quad y''(x) = c_1 e^x + c_2 e^{-x} - c_3 \cos x - c_4 \sin x, \quad y'''(x) = c_1 e^x - c_2 e^{-x} + c_3 \sin x - c_4 \cos x,$

le condizioni iniziali definiscono il seguente sistema lineare nelle incognite c_1 , c_2 , c_3 e c_4 :

$$0 = y(0) = c_1 + c_2 + c_3 \tag{1}$$

$$0 = y'(0) = c_1 - c_2 + c_4 (2)$$

$$0 = y'(0) = c_1 - c_2 + c_4$$

$$0 = y''(0) = c_1 + c_2 - c_3$$
(2)
(3)

$$4 = y'''(0) = c_1 - c_2 - c_4 \tag{4}$$

la cui unica soluzione é $c_1=1,\ c_2=-1,\ c_3=0,\ c_4=-2,$ da cui $y(x)=e^x-e^{-x}-2\sin x.$